Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 861: 160652, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36470376

RESUMO

Recent attempts, advances and challenges, as well as future perspectives regarding the application of proximal hyperspectral sensing (where sensors are placed within 10 m above plants, either on land-based platforms or in controlled environments) to assess plant abiotic stresses have been critically reviewed. Abiotic stresses, caused by either physical or chemical reasons such as nutrient deficiency, drought, salinity, heavy metals, herbicides, extreme temperatures, and so on, may be more damaging than biotic stresses (affected by infectious agents such as bacteria, fungi, insects, etc.) on crop yields. The proximal hyperspectral sensing provides images at a sub-millimeter spatial resolution for doing an in-depth study of plant physiology and thus offers a global view of the plant's status and allows for monitoring spatio-temporal variations from large geographical areas reliably and economically. The literature update has been based on 362 research papers in this field, published from 2010, most of which are from four years ago and, in our knowledge, it is the first paper that provides a comprehensive review of the applications of the technique for the detection of various types of abiotic stresses in plants.


Assuntos
Plantas , Estresse Fisiológico , Plantas/microbiologia , Fungos , Salinidade , Secas
2.
Foods ; 11(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35885291

RESUMO

Laser-induced Breakdown Spectroscopy (LIBS) is becoming an increasingly popular analytical technique for characterizing and identifying various products; its multi-element analysis, fast response, remote sensing, and sample preparation is minimal or nonexistent, and low running costs can significantly accelerate the analysis of foods with medicinal properties (FMPs). A comprehensive overview of recent advances in LIBS is presented, along with its future trends, viewpoints, and challenges. Besides reviewing its applications in both FMPs, it is intended to provide a concise description of the use of LIBS and chemometrics for the detection of FMPs, rather than a detailed description of the fundamentals of the technique, which others have already discussed. Finally, LIBS, like conventional approaches, has some limitations. However, it is a promising technique that may be employed as a routine analysis technique for FMPs when utilized effectively.

3.
Front Plant Sci ; 13: 846484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519809

RESUMO

The objective of the present study was to characterize the temporal and spatial variation of biopolymers in cells infected by the tea leaf blight using confocal Raman microspectroscopy. We investigated the biopolymers on serial sections of the infection part, and four sections corresponding to different stages of infection were obtained for analysis. Raman spectra extracted from four selected regions (circumscribing the vascular bundle) were analyzed in detail to enable a semi-quantitative comparison of biopolymers on a micron-scale. As the infection progressed, lignin and other phenolic compounds decreased in the vascular bundle, while they increased in both the walls of the bundle sheath cells as well as their intracellular components. The amount of cellulose and other polysaccharides increased in all parts as the infection developed. The variations in the content of lignin and cellulose in different tissues of an individual plant may be part of the reason for the plant's disease resistance. Through wavelet-based data mining, two-dimensional chemical images of lignin, cellulose and all biopolymers were quantified by integrating the characteristic spectral bands ranging from 1,589 to 1,607 cm-1, 1,087 to 1,100 cm-1, and 2,980 to 2,995 cm-1, respectively. The chemical images were consistent with the results of the semi-quantitative analysis, which indicated that the distribution of lignin in vascular bundle became irregular in sections with severe infection, and a substantial quantity of lignin was detected in the cell wall and inside the bundle sheath cell. In serious infected sections, cellulose was accumulated in vascular bundles and distributed within bundle sheath cells. In addition, the distribution of all biopolymers showed that there was a tylose substance produced within the vascular bundles to prevent the further development of pathogens. Therefore, confocal Raman microspectroscopy can be used as a powerful approach for investigating the temporal and spatial variation of biopolymers within cells. Through this method, we can gain knowledge about a plant's defense mechanisms against fungal pathogens.

4.
Sci Total Environ ; 802: 149824, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454145

RESUMO

The problem of excessive lead content in tea has become more and more serious with the development of society and industry. This paper investigated the ability of visible and near-infrared (Vis-NIR) spectroscopy to evaluate foliar lead uptake by tea plants through simulating real air pollution. Lead content of tea leaves in different treatment groups during stress time was measured by inductively coupled plasma mass spectrometry (ICP-MS). It was determined that stomata can be a channel for lead particles in the air and most of the lead entering through the stomata accumulates in the leaves. The spectral variation of treated samples was measured, and it was found that a combination of partial least squares-discriminant analysis (PLS-DA) and spectral responses can perfectly classify the tea samples under different lead concentrations stress with an overall accuracy of 0.979. Then the Vis-NIR spectra were used for fast monitoring physiological and biochemical indicators in tea leaves under atmospheric deposition. Relevant spectra pretreatment methods and characteristic wavelength selection approaches were evaluated for quantitative analysis and then optimal prediction models to instantly detect quality indicators in tea samples were built. Among predictive models, PLS had the best results (RMSE = 0.139 mg/g, 0.663 mmol/g, and 1.494 µmol/g) for the prediction of chlorophyll a (Chl-a), ascorbic acid (ASA), and glutathione (GSH), respectively. Also, principal component regression (PCR) gave the best results (RMSE = 0.053 mg/g, 0.024 mg/g, and 0.011%) for prediction of chlorophyll b (Chl-b), carotenoid (Car) and moisture content (MC), respectively. Results of this study can be applied for developing an effective and reliable approach for monitoring atmospheric deposition in plants.


Assuntos
Plântula , Espectroscopia de Luz Próxima ao Infravermelho , Aerossóis , Clorofila A , Chumbo , Análise dos Mínimos Quadrados , Chá
5.
Ecotoxicol Environ Saf ; 229: 113056, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883323

RESUMO

Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS-RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress.


Assuntos
Chumbo , Espectroscopia de Luz Próxima ao Infravermelho , Quimiometria , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Indicadores de Qualidade em Assistência à Saúde , Chá
6.
Plant Methods ; 17(1): 4, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407678

RESUMO

BACKGROUND: Photosynthetic pigments participating in the absorption, transformation and transfer of light energy play a very important role in plant growth. While, the spatial distribution of foliar pigments is an important indicator of environmental stress, such as pests, diseases and heavy metal stress. RESULTS: In this paper, in situ quantitative visualization of chlorophyll and carotenoid was realized by combining the Raman spectroscopy with calibration model transfer, and a laboratory Raman spectral model was successfully extended to a portable field spectral measurement. Firstly, a nondestructive and fast model for determination of chlorophyll and carotenoid in tea leaf was established based on confocal micro-Raman spectrometer in the laboratory. Then the spectral model was extended to a real-time foliar map scanning spectra of a field portable Raman spectrometer through calibration model transfer, and the spectral variation between the confocal micro-Raman spectrometer in the laboratory and the portable Raman spectrometer were effectively corrected by the direct standardization (DS) algorithm. The portable map scanning Raman spectra of the tea leaves after the model transfer were got into the established quantitative determination model to predict the concentration of photosynthetic pigments at each pixel of the tea leaves. The predicted photosynthetic pigments concentration of each pixel was imaged to illustrate the distribution map of foliar pigments. Statistical analysis showed that the predicted pigment contents were highly correlated with the real contents. CONCLUSIONS: It can be concluded that the Raman spectroscopy was applicable for in situ, non-destructive and rapid quantitative detecting and imaging of photosynthetic pigment concentration in tea leaves, and the spectral detection model established based on the laboratory Raman spectrometer can be applied to a portable field spectrometer for quantitatively imaging of the foliar pigments.

7.
Food Sci Nutr ; 8(11): 5860-5874, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282238

RESUMO

Increasing consumption of green tea is attributed to the beneficial effects of its constituents, especially polyphenols, on human health, which can be varied during leaf processing. Processing technology has the most important effect on green tea quality. This study investigated the system dynamics of eight catechins, gallic acid, and caffeine in the processing of two varieties of tea, from fresh leaves to finished tea. It was found that complex biochemical changes can occur through hydrolysis under different humidity and heating conditions during the tea processing. This process had a significant effect on catechin composition in the finished tea. The potential application of visible and near-infrared (Vis-NIR) spectroscopy for fast monitoring polyphenol and caffeine contents in tea leaves during the processing procedure has been investigated. It was found that a combination of PCA (principal component analysis) and Vis-NIR spectroscopy can successfully classify the two varieties of tea samples and the five tea processing procedures, while quantitative determination of the constituents was realized by combined regression analysis and Vis-NIR spectra. Furthermore, successive projections algorithm (SPA) was proposed to extract and optimize spectral variables that reflected the molecular characteristics of the constituents for the development of determination models. Modeling results showed that the models had good predictability and robustness based on the extracted spectral characteristics. The coefficients of determination for all calibration sets and prediction sets were higher than 0.862 and 0.834, respectively, which indicated high capability of Vis-NIR spectroscopy for the determination of the constituents during the leaf processing. Meanwhile, this analytical method could quickly monitor quality characteristics and provide feedback for real-time controlling of tea processing machines. Furthermore, the study on complex biochemical changes that occurred during the tea processing would provide a theoretical basis for improving the content of quality components and effective controlling processes.

8.
Talanta ; 148: 54-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26653423

RESUMO

Banana undergoes significant quality indices and color transformations during shelf-life process, which in turn affect important chemical and physical characteristics for the organoleptic quality of banana. A computer vision system was implemented in order to evaluate color of banana in RGB, L*a*b* and HSV color spaces, and changes in color features of banana during shelf-life were employed for the quantitative prediction of quality indices. The radial basis function (RBF) was applied as the kernel function of support vector regression (SVR) and the color features, in different color spaces, were selected as the inputs of the model, being determined total soluble solids, pH, titratable acidity and firmness as the output. Experimental results provided an improvement in predictive accuracy as compared with those obtained by using artificial neural network (ANN).


Assuntos
Inteligência Artificial , Musa/química , Redes Neurais de Computação , Pigmentos Biológicos/análise , Máquina de Vetores de Suporte , Inteligência Artificial/tendências , Cor , Previsões , Máquina de Vetores de Suporte/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...